MENDEL'S LAWS OF INHERITANCE Phenotype 149			
MENDEL	Frequency	Phenotype	149
100	2		Frequency
VRE	2	Yellow Round	
YYRR YYRR YYRr	4]		9
ALL	2}	Yellow Wrinkled	
yyrr yyRR	1	Green Round	3
yy	1	C	3
The nine different types of genotypes exp			
The nine different types of genotypes expected in F ₂ generation phybrid genotypic ratio. MENDEL'S LAW OF INHERITANA			
MENDEL'S LAW OF INHERITANON			

MENDEL'S LAW OF INHERITANCE

On the basis of the results of his experiments Mendel recognized the phenomenon of dominance and formulated the

- 1. Law of segregation;
- 2. Law of Independent Assortment.

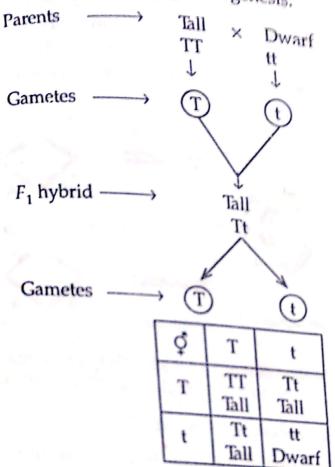
I The phenomenon of dominance:

Definition: When two homozygous individuals with one or more sets of contrasting characters are crossed, the characters that appear in the F_1 hybrids are called dominant characters and those do not appear in F_1 are recessive characters.

In other words, a trait or character which appears only in homozygous individual is called a recessive character (e.g. dwarfness). A character which can phenotypically expresses itself in the homozygous as well as heterozygous individual is called dominant character (e.g. tallness).

Explanation: In all his hybridization experiments, Mendel observed that when two alternative forms of a character are crossed and brought together, only one form is able to express itself in F_1

hybrids i.e., the trait of only one parent was observed. He called hybrids i.e., the trait of the hybrid is the dominant character. The other the one which appeared in F₁ as the dominant character. The other the one which appeared in the hybrid is called torm, which remains masked or unexpressed in the hybrid is called recessive character.


After Mendel, several workers tested the validity of the After Mender, see the the phenomenon of dominance by performing cross-breeding experiments, phenomenon of dominance by performing cross-breeding experiments. They found its wide application in various plants and animals.

Il Law of Segregation:

Definition: Mendel's first law of inheritance is called the law of segregation. This law states that in a heterozygote a dominant and a recessive allele remain together throughout the life (from zygote to the gametogenesis stage). Without contaminating or mixing with each other they finally separate or segregate from each other during gametogenesis. So that each gamete receives only one allele either dominant or recessive. As the gametes are pure for a given character (e.g. Tallness or Dwarfness), this law is also known as Law of purity of gametes.

Explanation: The homozygous tall plants possess two genes (factors) TT for tallness and dwarf plants possess, two genes tt for smallness. The gametes formed by tall plant will have a gene 'T' and the gametes coming from dwarf plant will carry gene 't'. Their union form F₁ hybrid which will have the genetic constitution as Tt. This hybrid is apparently tall as T is dominant over t. When this F₁ hybrid form gametes, the two genes T and t separate from each other and pass on to separate gemetes. As a result, two types of gametes are produced from the heterozygote in equal numbers. 50% of the gametes carry gene 'T' and the other 50% of the gametes carry gene 't'. The genes (allels of a gene) thus segregate and the gamete can carry only one of the two alternative genes. Therefore, these gametes are pure either for tallness or dwarfness. Hence, the law of segregation is also called as law of purity of gametes.

These gametes during the process of fertilization can unite in three possible combinations, Viz. TT, Tt and tt to produce two types MENDEL'S LAWS OF INHERITANCE MENDEL in F₂ generations. Thus, in F₂ generation 75% individuals have long stems and 25% short stems (Dwarf plants in F₂ generation 75% of Dwarf plants in F₂ generation (Dwarf) individuals have long stems and 25% short stems (Dwarf). The of Dwarf plants in F₂ generation indicate that in the F₁ product, the allele (t) for dwarfness remains along with allele (t) pppearance of the allele (t) for dwarfness remains along with allele (T) for by brid, but does not mix with it or get contaminated by the cate or segregate during garnets. but does not mix with it or get contaminated by it. These fallness, parate or segregate during gametogenesis, alleles separate Parents

Physical Basis of segregation: The phenomenon of segregation can be easily explained on the basis of behaviour of homologous chromosomes during meiosis. As a consequence of segregation, the two alleles of a gene separate and go into different gametes. In F_1 hybrid or heterozygote, one of the two alleles of a gene (T) is present in one chromosome, while the allele (t) is present in its homologue. The two homologous chromosomes pair during prophase I and orient at the metaphase plate during metaphase I. At anaphase I, one of the two homologous chromosomes move to one pole, while the other thromosome of this pair move to the opposite pole. Thus, each pole receives only one member of a homologous pair of chromosomes. As a

result, one of the two alleles (T) goes to one pole, while the other allele (t) goes to the opposite pole.

At anaphase II, the two sister chromatids of each chromosome At anaphase II, the two separate and move to opposite poles producing four daughter cells each having a single chromatid from each homologous pair of each having a single clause of these four cells receive sister chromatids from chromosomes. Two of these four cells receive sister chromatids from the chromatid from the chromatid from the chromatids from the chromatid from the chromatid from the one of the two homologues, while the other two receive sister Thus, separation of chromatids from the other homologue. homologous chromosomes during meiosis result in the segregation of

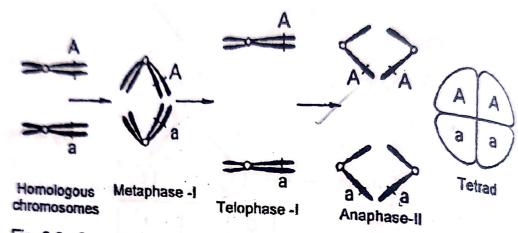


Fig. 2-3: Segregation of a pair of alleles (Aa) as a result of movement of homologous chromosomes and of sister chromatids during meiosis

Law of Independent Assortment:

Mendel formulated this law from the results of a dihybrid cross. According to this law:

"the factors or genes for different pairs of contrasting characters present in a parent assort (separate) independently from one another during gamete production". Thus, any allele of one gene is equally likely to combine with any allele of the other gene and pass into the same gamete. Independent assortment of two genes produces four different types of gametes in equal proportion. A random union among these gametes gives rise to 16 possible zygotes. These zygotes yield a 9:3:3:1 phenotypic ratio, which is known as

MENDEL'S LAWS OF INHERITANCE Eplanation: The mechanism of independent assortment can be Explanation a dihybrid cross. In one of his hybridization deriments, Mendel crossed a homozygous pea plant having with the homozygous one of his hybridization one of his hybridization Mendel crossed a homozygous pea plant having yellow of hybridization (YYRR) with the homozygous pea plant having hybridization of his hybridization with the homozygous pea plant having yellow (YYRR) with the homozygous pea plant having green (YYRR). The F_1 hybrids were found to have f_1 hybrids f_2 and f_3 when these f_4 hybrids f_4 are f_4 hybrids. The F_1 hybrids were found to have yellow with the seeds (YyRr). When these F_1 hybrids were allowed to have yellow and seeds (YyRr). were found to have yellow with the seeds (YyRr). When these F_1 hybrids were allowed to cross themselves, they produced four types of seeds in the seeds in the seeds in the seeds in the seeds. were allowed to cross which themselves, they produced four types of seeds in the ratio of anong themselves as below. and 3:3:1 given as below.

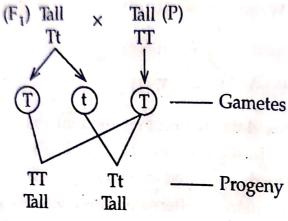
Yellow Round -315(9)

Yellow Wrinkled — 101(3)

Green Round --108(3)

Green Wrinkled — 32(1)

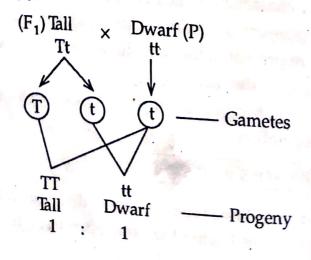
From this data, it becomes evident that yellow and green seeds appeared in the ratio of 416: 140 i.e., 3: 1. Similarly rounce and wrinkled seeds appeared in the ratio of 423: 133 i.e., 3:1. Thus each of the two pairs of alternate characters viz. yellow-green pai and round-wrinkled pair, behave exactly as in a monohybrid cross This indicates that at the time of gamete formation, the alleles fo colour of seed do not interfere with alleles for shape of seed coat and the two pairs of alleles behave independent of each other. Thi principle is known as Mendel's Law of Independent Assortment.

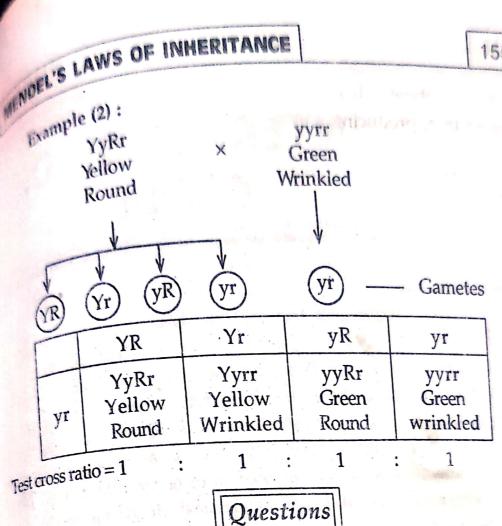

This independent assortment holds good for two or more than two pairs of characters, which are located in different homologou pairs of chromosomes. On the other hand, if the alleles for differen characters are present in the same homologous pair of chromosomes they enter into the same gamete. Thus, law of independer assortment is not applicable to such cases, where linkage betwee genes is in operation.

BACK CROSS AND TEST CROSS

Mendel used two types of tests to distinguish homozygous on from heterozygotes having the same phenotype (e.g. TT and Tt fc tall phenotype). If a homozygous tall paint (TT) is selfed, it will be tall plants. But when heterozygous tall phenotype). It a notice of the breed true, producing only tall plants. But when heterozygous tall breed true, producing only tall plants appear in 3:1 rational tall and dwarf plants. plants (Tt) are selfed, tall and dwarf plants appear in 3:1 ratio. Back cross:

when F₁ individuals are crossed with one of the two parents When r₁ murved then such a cross is called back cross when F. is back crossed to the parent In such backcrosses, when F₁ is back crossed to the parent with In such backcrosses, with dominant characters, no recessive individuals are obtained in the progeny.


Example:



Test Cross:

When F₁ individuals are crossed with recessive parent, both phenotypes appear in the progeny. This is known as test cross, because it is used to test whether an individual is homozygous (pure) or heterozygous (hybrid). For a monohybrid the test cross ratio is 1:1, but, for a dihybrid the test cross ratio becomes 1:1:1:1.

Example (1):

- 1. Discuss Mendel's Laws of inheritance.
- 2. Describe the monohybrid and dihybrid experiments that were conducted by Mendel on Pisum sativum.
- 3. Write short notes on:
 - (a) Law of Dominance
 - (b) Law of Segregation
 - (c) Law of Independent Assortment
 - (d) Back cross and Test Cross
- 4. What is law of Independent Assortment? Explain it with dihybrid ratio.